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We consider the Wiener filtering problem,when i,
the cross spectral density matrix of the signal and

a -ctrix D for real processes are:

Ds(w), D“(w) rqal. even, non-negative functions

noise is not exactly known. We obtain filters
which are saddle point solutions for the criterion
E of performance (mean square error, MSE) over the

classes of allowable density matrices. Solutions
for various classes are given.

2

ii. "’sn‘"” < D (w)+D () )

So D is non-negative definite, and diagonal elements
are even functions of w.

Given random processes s(t) and n(t) with den-

sity matrix D and a filter h(t) with Fourier trans-
form H(w), the MSE for signal estimation using this
filter is

I. INTRODUCTION

In classical Wiener filtering, we need to as-
sume exact knowledge of the spectral density ma-
trix of signal and noise. In many applications
this assumption of exact knowledge is unreasonable.
A wvore realistic assumption is that our matrix be-
longs to a class of density matrices. This class
can be defined according to our knowledge of the
true density matrix. For this problem we will de- ’ - (2)
rive a filter that performs in an optimum way over
the whole class.

Nahi and Weiss [1,2] derived the bounding fil-
ter. This filter is a Wiener filter for some den-
sity matrix Db and if it is applied to any matrix

e(D,H) = BE:(:)-' { h(v)x(t-v)dv]z

Ened

= R, (0)-2 _1 h(V)R_ (v)dv + L{h(v)h(u)&xx(v-u)dvdu,

where x(t)=s(t)+n(t) and Rij(r) is the cross corre-

lation between i and j. Using Fourier transformand
Pargseval's theorem, (2) can be written as:

from the class the MSE error is bounded by the min-
imum MSE for Db' Because Db does not usually be~

long to the class, there is no matrix in the class
that can reach the bound of the MSE. This means
that there is a possibility for better performance.
Kassam and Lim (3] derived the robust Wiener D)
filter, when signal and noise are uncorrelated H = ax " %)
(density matrix diagonal). This filter sets a o D_(w) .
bound on the MSE and the bound can be reached by . X
some matrix from the class. In [4] and {5], Poor
generalized some of this work. The present paper If ve substitute (4) into (3) we have that the op-
extends the above idea to the correlated signal and tisun MSE is given py:
noise case. ®
Presence of correlation is possible in many ID )D (")_!Ds (w)tz

e(n,ﬁ)-z-l; f [Ds(w)-ZH(v)sz(w)-b'H(w)lsz(w)]dw %))

The optimum filter for D is given by

applications. An example is a multipath channel e, (D) 2
with s strong signal component, weak unwanted mul- : 2
tipath signals and regular noise. The total

"noise" 18 correlated with the signal.

1

II. ROBUST WIENER FILTERS 2.1 Definition of Robust Filter -

Let us assume that our processes are real,
wide sense stationary and zero mean and the noise
process is additive. We also assume that there ex-
ists a spectral density matrix D for the signal,
noise processes, given by:

. Assume that a class A of density matrices is
given. A robust filter H is defined by the fol-
lowing properties:

a. H_ is an optimum filter for some matrix D ed,

) . nl (') Dsn (H)

so that e(D o ) < e(d",H) for any filter H.

Yor any DeAwe have: e(D,H) < e (D Ty=e (D" ,H e

b.
DA (W) D (w)

' Combining a and b we have the saddle point relation
vhere s 1s for signal, n for noise and (*) for com-

plex conjugate. The properties that characterize , c(D.Hr) < eop(nr) s e(dF, 1) 6)
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for any DeA and any filter H.
2.2 Theorem 0.
Let A be a convex class of density matrices.

Then the pair (Dr,Hr) is a saddle point solution

for MSE over class A and the class of all linear
filters (it satisfies (6)), if and only if:

r, _ max
eop(b ) = peA eop(D)

The proof is given in appendix A.

-~ Theorem 0 is the key point in our search for
the robust filter, because based on it we have on-
ly to maximize eop(D)'

2.3 Maximizatioa of eop(_la

From (5) if we write the error in terms of s
and n we get:

1 [ 2,00 )-[p_w)1?
e (D) = — n S0 dw
op 2n D, (W) +D_ (w)+2Re[ Don (w)] (€©)]

-t

For every w and for given Ds(w) ,Dn(w),[Dsn(w)l , the
worst Re[Dsn(w)] is —IDsn(w)| , because it minimi-
zes the denominator. This gives:

I 2
1 Ds(v)°Dn(w)-IDsn(w)l .
2r | D_(w)+5_Gw)-2]D_ (w3 v

L (D) = (8)

For given D’(w).‘Dn(w) expression (8). as a function
of ID.,,(v)l 1sa: '

a. 1increasing for:
0s |D‘n(v)| < min{D_(v),D_(w)}
b. decreasing for:

sta{D_(v),D (W)} < Inm(w)l s /D _(&),D (W) 0, ()
From condition a and b we can say that, given
D.(w), D n(")’ the worst IDm(w)l is the one that
1is as close as possible to min{Ds(v) .Dn(w)}. The
worst D (w) 1s D_ (w) = -lnm(w)l .

III. APPLICATIONS

1. p-(vz, Dngvz giv?n with upper and lower bounds
on ID.nQVZI .

Let 0 < L(w) g IDm(v)l < U(w), with L(w),U(w)
given., If we define:

“Aw) = lin(b.(w) .Dn(v)) (9)

then the worst-case chnuctcriuic[b:n(w) I1s given

by

e e €= e

e e e . e m— e PR,

L(w) 1f A(w) s L(w)
A(w) 1f L(w) < A(w) 5 U(w)
U(w) 1f U(v) s A(w)

r
il = {

where A(w) defined in (9). T
From section 2.2 we have that D:n(w)--lnm(w)l.

Figure 1 illustrates this case,

2. Upper and lower bounds on Ds(") and Dn(w).

We assume that bounds Li(") ,ui(u) for Di(") are
given:

0x Li(") 4 Di(v) sUi(w) {=s,n.

In addition we will assume knowledge of the total
power of signal and noise,

-
2
Ibi(w)dv - 2“1 i=g,n
-
where ¢ i are known,

A. 1If there are no bounds on |D“(w)| , it can
reach the value nin(n.(v) .Dn(v)}. Under this con-
dition the error is:

eop(b) = 51; Inin(D'(w) .Dn(v)}dv (10)

-

Because of the power constraints, there are several
sub-cases., First we will give some definitions.

A.(v) = nin(ll.(v), u_mx[Ls(v), Ln(w)]}
A (w) = min(U (W), max(L_(w), Ln(w)]}
B.(w) - uin{U.(w), m[L.(w), Un(v)]}
Bn(v) - lin{Un(w). mx[Ln(w), Us(v)]}

Pigure 2 illustrates the definition of A“(w) ’Bs(")'

Al IA.(V)dw > 2wa§. ]An(w)dv > 21103. then:

-
L.(v) 1f A (W) = Ls(v)

D:(V) =
!.. (w) otherwise

D'(v) . Ln(w) if An(w) = Ln(w)
a l.n(w) othervise

e op(Dr)-oi+ :— 21—“ [(L s (v)+Ln (w) -nin(Ln(w) .L.(\i) ) ldw

Where L .(v). ln(v) are arbitrary fuactions with
.l.(v) < A'(v) and "n(") 3 An(w)
but enough for D:(v) and D:(v) to fulfill the power

constraints.
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D:(H) _ { U (@) 1f U (w) = B (v)

2 . otherwise

I:.(v)dv > 2:03. .Fn(w)dw < 21:0:
-

-r

U (w) £ U =B
D:(v) is as in case Al n ) n(w) n(")

U (w) 4f U_(w) = A (W)
pf(w) =4 ° n n
] £,(w) othervise Where £ _(w) > B_(v) and £ (w) > B (v).

r
Dn(") i Y n(w) othervise

where L _(w) arbitrary function with £_(w) 2 A (w).
. a n n T 1
eop(D )= I min(l.l’(w), Un(w)}dv

eop(bt) - az - 71'- r(L'(v) - -in(l.s(w) U, (W)}
i In the cases above, interchanging the roles of s and

n in the conditions gives us similar results. The
a3, - - proof for cases Al and A3 can be found in Appendix
IB.(v)dw > Zld: > IAs(")d" B.
N s - B. Suppose we are given a function R(w) such that
b ()dw > ch: N I v 0< |p, ] < RW) < min(L (¥), L, (w))
baaed = = — Because of the maximization problem le (W) jhas tobe
1s0 assume 2'0: _ I AW > 21ro§ _ IA. (w)dv as close as possible to min(D (w), D (W), so
— . == I, )| = R(w). To find the pair D.(w), DL(w)
A (w) 1f A (W) = B () notice that:
D(w) = -
s ) s(") otherwise D, W) D, M_Rz )
' A (W) 1€ A (W) = B (w) ¢p® = 7 | 5_(aye0_wi-ZRG ¥
D () = n n n ‘ ‘a8 n
by l‘(w) otherwise - »
r .1 1 | S(w) NGw)
: Where A_(w) < £.(v) < B (w) and D" (v) < 2 (w) . 5 I R(Wdw + 5= | < @ & (11)
- =)
' s 3 (W) -t ’
Where S (w) -Ds(w) -R(w)20 and N (w)-Dn(w)-R(w)LO. To
€ 2 1 maximize (11) it is enough to maximize the second
‘op(n ) = O = 35 {La(v)-nin(un(w) ,La(w))}dw term. But this term is the expression for the min-
s ) imum MSE for uncorrelated signal S(w) and noise
¥ - N{w), with
i A 2 [ 2 [ L) - R(s) $ S(w) £ U (&) - R(w)
M, IB'(v)dv > 2mo, > IA'(v)dw.‘ na > Inn(w)dw L (W) - R < N(w) £ U_(w) - RO
D:(v) as in case A3l. and [S(w)dw = Zm:i - F\(w)dv
-4 -
ooy = U (w) 1£ U (W) = A (%) F'(") v = 2v0? - Ft(w) .
a n
l.‘(v) othervise - -
r This problem has been solved in [3] and gives the
Where L (v) > D _(v) solution to the present case.

3. Given classes for Ds(wl, Dn(g)

2 1
c”(bt) = 0g = 35 [{Lg(w)-min(V (w),L (w)}dw We assume again knowledge of the total powver
. of signal and noise. When there is no restriction
on D.a(w) we have seen that the error is given by

foll H
3. 3'¢i > F.(v)dv, 2:0: > Fn(")d" (10) and it can be written in the following way

fad o

\ -

op® = 7= £g(x)-nn(v)-dv a2

e w e em o g e - e
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vhelle
xfor 0 <x<1
d g(x) =
1 for x>1
and
D (w)
(W)

g(x) 18 a convex function of x for x 2 0. So (12)
can be used as a measure of distance Dbetween
D.(v) and Dn(w). Now for given classes of Ds(")

and Dn(v) we want the pair D:(w), D:(w) that has

the maximum distance. It turns out as we can see
from [4,6] and [7] that this pair does not depend
on the form of g(x). As long as g(x) is any con-
vex function the pair is always the same. Solu-
tions to this problem are also given in these works
for various classes.

IV. NUMERICAL RESULTS

We will assume the case when signal and noise
are given as in Figure 3 and there is no restrict-
ion on ln.n(w)[. The robust filter is simply:

. 1 when D_(w) 2 D_(w)
B (v) =
0 otherwise

It turns out that this filter has the same error
performance for any Dsn(w). If we use instead of

lt (w) the filter

D’(V)

B ) = b, W)+ _(w)

assuming that signal and noise are uncorrelated,
then the error 1is given by (3) and it becomes max-

imun for
Dy = -“D.(w)Dn(w).

In Table 1 are given some numbers for differ-

ent b. The error is e, when we use Ht(") and e,

is the worst error when we use H (w). In the third
column we can see the percentage of performance
improvement. Also shown is the optimum error e* of
B, (w) when D (w)-O

APPENDIX A

Before proving Theorem 0, we will prove the
following lemma.

Lesms 1. Let D', D"cA, define D°=(1-c)D'+ €D"

0 < e g1 then the expression:
n (w)- n ()~ |n (w)|
n:(v)

G(e,w) =

is a convex function of ¢.

Proof. 1t is sufficient to prove that:

Gle,v) 2 (l-e)c(o.v) + ¢G(1,w).

Subtracting each side from D (v) we have to prove
that

2 2
Dl D"
| __l_ < ) for, | .. for
D Dx D:
Io; I’ Jor |2
(1) [:2.9
|(1-c)D;x + el sLu —e)—= eT;—
o{ (1-:)1); + en;}

But this 18 the Schwartz inequality.

Proof of Theorem O.
The only if part is easy. From (6)

e(H) < g(n',ur) - eop(n')
bute(Dl-l)ze (D) s0 e, (D)ze (D)

To prove the if part, define p® = (1-€)pF + €D,
0 5 £ <1 where DEA.  Because of the lemma and the
fact that

eop(n‘) - 21—‘ G(e,w)dw

eop(Dc) 18 a convex function of €. So:

eop(ns) 2 (l-e)e (Dr) +¢€ eop(n) and

., (n ) - e, (n"') i
02 eop(D) - eop(D ) 13)

€
€ r
() - eog(D )

€
to e and bounded as we can see fyom (13) ics limic

e
Because —2P

is monotonic with respect

exists as e¢o+. But-
e (0° )-e, ("
\!____E_

2x

[ G(e,wez-c(o,w) & (16

Now adg G(e,w) 13 also uonotonic with respect to e.

From (13) and (14) .' we have

-
1im {1 G(e,w) - Glo,w) -
02 ot|2n € dv

1(11a G(e,w)- Glo,w) , .
2r) erot
i

L]

Ty I G(e ,v)l dw

c-o

But the last expression after we take the deriva-

tive and mske some manipulations, equals e(D.llt) -
r r

.op(n ). s°V°op(D )2 e(D.Ht).
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APPENDIX B

Yor the second application we will outline the
proofs for subcases,Al and A3.
Ve can prove the rest of the cases.

In a similar way,
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-h{L..Dn}] s nin{L‘,Dn} + D‘ - L,

F nin{L.,Un) +D, - L. and
-

op®) < u:-}; I[Ls(w)-min{l.’(w) WU ()} 1dw

-

with equality when D = pF.
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D, (w)

D, (w)

|

Figure 2

- for A‘(w)
-+= for B'(w)

v

i — . W
I1llustration of functions defined .

in case 2A, section III

a

Figure 3 Example spectra of section IV

w

TABLE 1
b e, e, 4 e:
0.10 0.09 0.12 34.5 0.07
1.00 0.50 0.62 25.7 0.33
5.00 0.83 1.10 31.7 0.62
10.0 0.91 1.20 34.5 0.73

TABLE 1 Performance Comparision of Robust and
Nominally Optimum Filter gor Example of
Figure 3. (No bound on IDsn(w)l ).
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